

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Ordinary Level

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

5215845674

CHEMISTRY 5070/42

Paper 4 Alternative to Practical

May/June 2011

1 hour

Candidates answer on the Question Paper.

No Additional Materials are required.

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.

Write in dark blue or black pen.

You may use a soft pencil for any diagrams, graphs or rough working.

Do not use staples, paper clips, highlighters, glue or correction fluid.

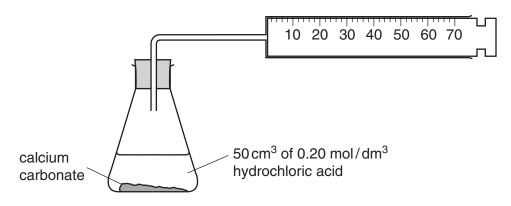
DO NOT WRITE IN ANY BARCODES.

Answer all questions.

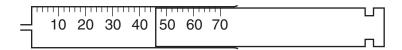
Write your answers in the spaces provided in the Question Paper.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.


For Examiner's Use

This document consists of 14 printed pages and 2 blank pages.



1 A student adds hydrochloric acid to calcium carbonate to produce carbon dioxide.

For Examiner's Use

The diagram below shows the gas syringe containing the volume of carbon dioxide collected in one minute.

(a) What volume of carbon dioxide is collected in one minute?

cm ³ [1	ı					
-------------------	---	---	--	--	--	--	--

(b) Will the volume collected during the second minute be less than, the same, or more than the volume collected during the first minute? Explain your answer.

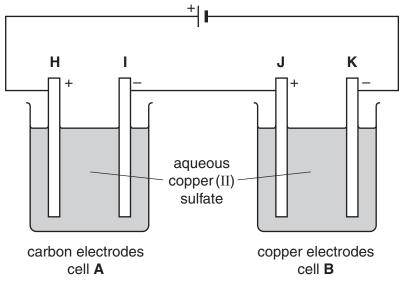
.....[2

The equation for the reaction is

$$CaCO_3 + 2HCl \rightarrow CaCl_2 + H_2O + CO_2$$

- (c) $50\,\mathrm{cm^3}$ of $0.20\,\mathrm{mol/dm^3}$ hydrochloric acid is added to an excess of calcium carbonate.
 - (i) Calculate the number of moles in $50\,\mathrm{cm}^3$ of $0.20\,\mathrm{mol/dm}^3$ hydrochloric acid.

..... moles [1]


(ii) Calculate the relative formula mass of calcium carbonate. [*A_r*: C,12; O,16; Ca, 40.]

.....[1]

	(iii)	Using your answers to (c)(i) and (c)(ii) and the equation for the reaction, calculate the mass of calcium carbonate required to completely react with 50 cm ³ of 0.20 mol/dm ³ hydrochloric acid.	For Examiner's Use
		cm ³ [1]	
	(iv)	Calculate the maximum volume of carbon dioxide that is produced when 50 cm ³ of 0.20 mol/dm ³ of hydrochloric acid reacts completely with the excess calcium carbonate.	
		[1 mole of a gas occupies a volume of 24 dm ³ at room temperature and pressure.]	
		cm ³ [1]	
(d)	Sug	gest how the speed of this reaction can be increased by changing	
	(i)	the particle size of calcium carbonate,	
		[1]	
	(ii)	the concentration of hydrochloric acid.	
		[1]	
(e)	Sug	gest another way in which the student can increase the speed of the reaction.	
		[1]	
		[Total: 10]	

2 The apparatus below is used to compare the results of passing a current through aqueous copper(II) sulfate using different electrodes.

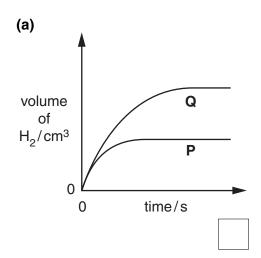
For Examiner's Use

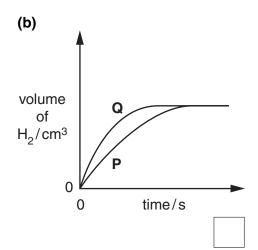
(2)	\ \ /b.	at colour is aguesus conner(II) sulfate?
(a)	VVII	at colour is aqueous copper(II) sulfate?
(b)	(i)	In which cell, A or B , is a colour change not seen in the solution?
		[1]
	(ii)	Describe what is seen at each electrode in this cell, as the electrolysis proceeds?
		[2]
	(iii)	Explain why a colour change is not seen in the solution in this cell.
		[1]
(c)	(i)	What colour change is seen in the solution in the other cell?
		[1]
	(ii)	At which electrode H , I , J or K is a gas produced?
		[1]
	(iii)	Name this gas.
		[1]
		Give a test for this gas
		test

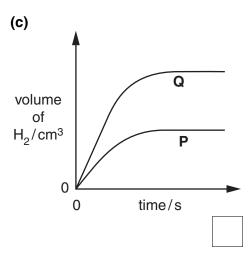
observation[1]

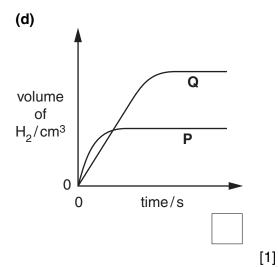
	(iv)	What is seer	n at the ot	her electrode	in this cell?			For Examiner's
							[Total:	
For	questions	s 3 to 7 inclus	ive, place	a tick (✓) in t	he box against the	correct an	ıswer.	
3	•			•	r as an impurity. zinc sulfate crystals	s?		
	(a) Sha	ake with water	, filter and	d crystallise th	e filtrate.			
	(b) Sha	ake with ethan	ol, filter a	nd crystallise	the filtrate.			
	(c) Sha	ıke with water	r, filter, wa	sh the residue	e with water and dr	y it.		
	(d) Sha	ıke with ethan	ıol, filter, v	vash the resic	lue with ethanol an	d dry it.		[1]
4	oxygen.	f an organic c C,12; O,16]	compound	G contains 2	2.73g of carbon, 0.	45g of hyd	drogen, and 1.8	2g
	Its empir	rical formula is	S					
	(a) CH	0						
	(b) CH ₂	4O						
	(c) C ₂ H	H ₄ O						
	(d) C ₂ H	I ₂ O						[1]
5	He react He then sulfuric a		h acidified d to the re an ester.	d potassium d	ichromate(VI) to pr anol, together with			ed
	(a) CH ₃	3CO2C2H5						
	(b) C ₂ H	H ₅ CO ₂ C ₂ H ₅						
	(c) C ₂ H	$H_5CO_2C_3H_7$						
	(d) C ₃ H	H ₇ CO ₂ C ₂ H ₅						[1]

6 A student adds 5.0 cm³ of 0.20 mol/dm³ hydrochloric acid to an excess of zinc pieces. The volume of hydrogen evolved is recorded at regular time intervals until no more gas is produced.

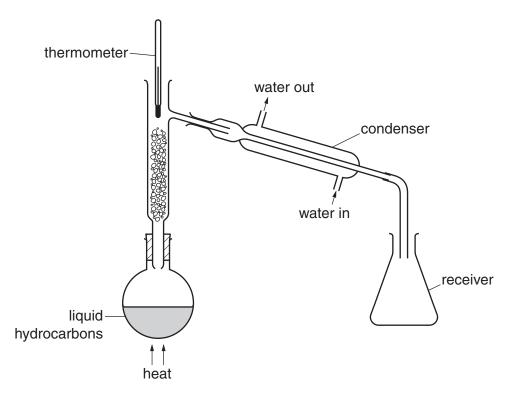

For Examiner's Use


This is experiment **P**.


The experiment is repeated using $20.0\,\mathrm{cm^3}$ of $0.10\,\mathrm{mol/dm^3}$ hydrochloric acid and an excess of zinc powder.


This is experiment Q.

Which one of the following is obtained?



7 A student sets up the apparatus shown below in order to separate two hydrocarbons by fractional distillation.

For Examiner's Use

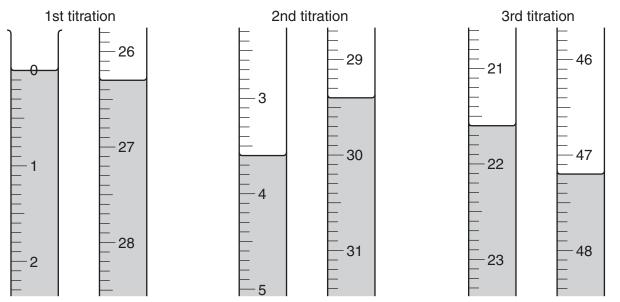
What error is the student making in setting up the apparatus?

(a)	The thermometer is in the wrong position.	

- (b) There should be a bung in the top of the fractionating column.
- (c) There should be a bung in the top of the receiver.
- (d) The water enters the condenser in the wrong place.

[1]

For Examiner's Use


Α :	s a mixture of iron(II) sulfate and iron(III) sulfate. student determines the mass of iron(II) sulfate in the mixture using 0.0180 mol/dm ³ ueous potassium manganate(VII), solution S .
(a)	Potassium manganate(VII), which is purple, oxidises the iron(II) ions in the mixture.
	Why does potassium manganate(VII) not react with iron(III) ions?
	[1]
(b)	A sample of M is added to a previously weighed container, which is then reweighed.
	mass of container + $\mathbf{M} = 17.01 \mathrm{g}$ mass of container = 11.93 g
	Calculate the mass of M used in the experiment.
	g [1]
(c)	The sample of $\bf M$ is placed in a flask, dissolved in $100{\rm cm}^3$ of dilute sulfuric acid and mixed thoroughly. The solution is made up to $250{\rm cm}^3$ with distilled water. This is solution $\bf P$.
	25.0 cm ³ of P is transferred into a conical flask.
	What piece of apparatus should be used to transfer 25.0 cm ³ of P ?
	[1]
(d)	Solution ${\bf S}$ is put into a burette and run into the conical flask containing ${\bf P}$ until the endpoint is reached.
	What is the colour of the solution in the conical flask
	(i) before S is added,
	(ii) at the end-point when S is just in excess?

© UCLES 2011 5070/42/M/J/11

8

(e) Three titrations are done. The diagrams below show parts of the burette with the liquid levels at the beginning and end of each titration.

For Examiner's Use

Use the diagrams to complete the following table.

titration number	1	2	3
final burette reading / cm ³			
initial burette reading / cm ³			
volume of S used / cm ³			
best titration results (✓)			

Summary

Tick (\checkmark) the best titration results.

Using these results, the average volume of **S** used is

.....cm³. [4]

(f) S is 0.0180 mol/dm³ potassium manganate(VII).

Calculate the number of moles of potassium manganate(${
m VII}$) in the average volume of **S** in **(e)**.

..... moles [1]

(g) One mole of potassium manganate(VII) reacts with five moles of iron(II) sulfate.

Deduce the number of moles of iron(II) sulfate in 25.0 cm³ of P.

mole	es [1]

For Examiner's Use

(h)	Cal	culate
	(i)	the number of moles of iron(II) sulfate in 250 cm ³ P ,
	(ii)	moles [1] the mass of iron(II) sulfate in 250 cm 3 of ${\bf P}$. [$M_{\rm r}$: FeSO $_4$, 152]
(i)	Usi	g [1] ng your answers to (b) and (h)(ii) , calculate the mass of iron(II) sulfate in 1000 g of M .
		g [1]
		[Total: 13]

9 The following table shows the tests a student does on compound ${\bf V}$ and the conclusions made from observations.

For Examiner's Use

Complete the table by stating the conclusion in test (a), the observation in test (c) and suggest both the tests and observations that lead to the conclusions in tests (b) and (d).

test	observation	conclusion
(a) V is dissolved in water and the solution divided into three parts for tests (b), (c) and (d).	A colourless solution is obtained.	
(b)(i)		V may contain Al ³⁺ , Ca ²⁺ or Zn ²⁺ ions,
(ii)		V may contain Ca ²⁺ ions.
(c) To the second part aqueous ammonia is added until a change was seen.		The presence of Ca ²⁺ ions in V is confirmed.
(d)		V contains NO ₃ ⁻ ions.

[Total: 10]

10 (a) The reaction between aqueous barium chloride and dilute sulfuric acid produces a precipitate of barium sulfate.

For Examiner's Use

State the colour of this precipitate.

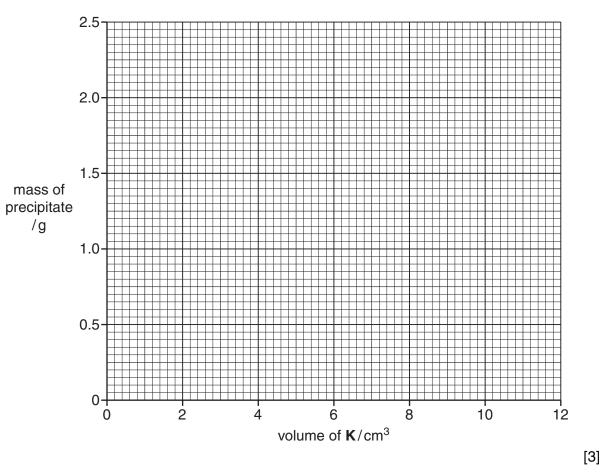
.....[1]

A series of experiments are done to find the mass of precipitate when different volumes of dilute sulfuric acid are added to a fixed volume of aqueous barium chloride.

Solution $\bf J$ is 1.00 mol/dm³ barium chloride. Solution $\bf K$ is sulfuric acid of unknown concentration.

 $10\,\mathrm{cm^3}$ of **J** is put into each of six test-tubes. Increasing volumes of **K** are added to each test-tube. The mixtures are filtered and the precipitates washed with water, dried and placed in a previously weighed container which is reweighed.

(b) The table below shows the results of these experiments.


Complete the final column.

volume of J /cm ³	volume of K /cm ³	mass of empty container / g	mass of container + precipitate / g	mass of precipitate / g
10.0	2.0	3.50	4.08	
10.0	4.0	3.50	4.55	
10.0	6.0	3.50	5.25	
10.0	8.0	3.50	5.83	
10.0	10.0	3.50	5.83	
10.0	12.0	3.50	5.83	

[2]

(c) Plot the mass of precipitate against the volume of **K** on the grid. Join the points with **two** best fit straight lines.

For Examiner's Use

(d) One of the results is incorrect. Circle this result on your grid and suggest what the correct result should be.

..... g [1]

(e) Use the data on your grid to deduce

(i) the volume of **K** which would produce 1.50 g of precipitate,

.....cm³ [1]

(ii) the maximum mass of precipitate that is produced,

..... g [1]

(iii) the minimum volume of K which reacts completely with the maximum mass in (ii).

.....g [1]

(f)	Write the equation for the reaction between barium chloride and sulfuric acid.	For Examiner's
	[1]	Use
(g)	Using your answers to $(e)(iii)$ and (f) , calculate the concentration of the sulfuric acid, K , used in the experiment.	
	mol / dm ³ [1]	
	[Total: 12]	

BLANK PAGE

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.